Extensions 1→N→G→Q→1 with N=C23 and Q=Dic6

Direct product G=N×Q with N=C23 and Q=Dic6
dρLabelID
C23×Dic6192C2^3xDic6192,1510

Semidirect products G=N:Q with N=C23 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C23⋊Dic6 = C2×A4⋊Q8φ: Dic6/C4S3 ⊆ Aut C2348C2^3:Dic6192,1468
C232Dic6 = C232Dic6φ: Dic6/C6C22 ⊆ Aut C2396C2^3:2Dic6192,506
C233Dic6 = C233Dic6φ: Dic6/C6C22 ⊆ Aut C2348C2^3:3Dic6192,1042
C234Dic6 = C2×Dic3.D4φ: Dic6/Dic3C2 ⊆ Aut C2396C2^3:4Dic6192,1040
C235Dic6 = C2×C12.48D4φ: Dic6/C12C2 ⊆ Aut C2396C2^3:5Dic6192,1343

Non-split extensions G=N.Q with N=C23 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C23.1Dic6 = C24.3D6φ: Dic6/C4S3 ⊆ Aut C2348C2^3.1Dic6192,970
C23.2Dic6 = C24.4D6φ: Dic6/C4S3 ⊆ Aut C2348C2^3.2Dic6192,971
C23.3Dic6 = C24.12D6φ: Dic6/C6C22 ⊆ Aut C2348C2^3.3Dic6192,85
C23.4Dic6 = C24.13D6φ: Dic6/C6C22 ⊆ Aut C2348C2^3.4Dic6192,86
C23.5Dic6 = C12.21C42φ: Dic6/C6C22 ⊆ Aut C23484C2^3.5Dic6192,119
C23.6Dic6 = C24.17D6φ: Dic6/C6C22 ⊆ Aut C2396C2^3.6Dic6192,507
C23.7Dic6 = C24.18D6φ: Dic6/C6C22 ⊆ Aut C2396C2^3.7Dic6192,508
C23.8Dic6 = C23.8Dic6φ: Dic6/C6C22 ⊆ Aut C23484C2^3.8Dic6192,683
C23.9Dic6 = C23.9Dic6φ: Dic6/C6C22 ⊆ Aut C23484C2^3.9Dic6192,684
C23.10Dic6 = C12.4C42φ: Dic6/Dic3C2 ⊆ Aut C2396C2^3.10Dic6192,117
C23.11Dic6 = C24.55D6φ: Dic6/Dic3C2 ⊆ Aut C2396C2^3.11Dic6192,501
C23.12Dic6 = C24.57D6φ: Dic6/Dic3C2 ⊆ Aut C2396C2^3.12Dic6192,505
C23.13Dic6 = C24.58D6φ: Dic6/Dic3C2 ⊆ Aut C2396C2^3.13Dic6192,509
C23.14Dic6 = C2×C12.53D4φ: Dic6/Dic3C2 ⊆ Aut C2396C2^3.14Dic6192,682
C23.15Dic6 = C12.10C42φ: Dic6/C12C2 ⊆ Aut C2396C2^3.15Dic6192,111
C23.16Dic6 = C2×C24.C4φ: Dic6/C12C2 ⊆ Aut C2396C2^3.16Dic6192,666
C23.17Dic6 = C24.73D6φ: Dic6/C12C2 ⊆ Aut C2396C2^3.17Dic6192,769
C23.18Dic6 = C24.75D6φ: Dic6/C12C2 ⊆ Aut C2396C2^3.18Dic6192,771
C23.19Dic6 = C2×C6.C42central extension (φ=1)192C2^3.19Dic6192,767
C23.20Dic6 = C22×Dic3⋊C4central extension (φ=1)192C2^3.20Dic6192,1342
C23.21Dic6 = C22×C4⋊Dic3central extension (φ=1)192C2^3.21Dic6192,1344

׿
×
𝔽